Maximal Abelian subgroups of the isometry and conformal groups of Euclidean and Minkowski spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triple factorization of non-abelian groups by two maximal subgroups

The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...

متن کامل

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

Maximal abelian subgroups of free profinite groups

THEOREM. Let F be the free profinite group on a set X, where \X\ > 2, and let n be a non-empty set of primes. Then F has a maximal abelian subgroup isomorphic to HpEn Zp. The idea of the proof is the following: we show that A — Ylpe7I1p is a free factor of Pa, i.e. fia ^ A *B for some profinite group B. To conclude from this that A is a maximal abelian subgroup of Fa (the general case then foll...

متن کامل

Finite $p$-groups and centralizers of non-cyclic abelian subgroups

A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is ‎cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq‎ ‎Z(G)$‎. ‎In this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{CAC}$-$p$-groups‎.

متن کامل

The number of Fuzzy subgroups of some non-abelian groups

In this paper, we compute the number of fuzzy subgroups of some classes of non-abeilan groups. Explicit formulas are givenfor dihedral groups $D_{2n}$, quasi-dihedral groups $QD_{2^n}$, generalized quaternion groups $Q_{4n}$ and modular $p$-groups $M_{p^n}$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and General

سال: 1998

ISSN: 0305-4470,1361-6447

DOI: 10.1088/0305-4470/31/7/016